ESQC 2024

By Simen Kvaal Mathematical Methods Lecture 4

Where to find the material SCAN ME

- Alternative 1:
	- [www.esqc.org,](http://www.esqc.org/) go to "lectures"
	- Find links there
- Alternative 2:
	- Scan QR code
	- simenkva.github.io/esqc_material

Vector calculus

Functions, integration and differentiation, in one and several variables

Functions of several variables

• We turn to the study of *vector valued* functions

$$
f: \mathbb{R}^n \to \mathbb{R}^m \qquad f: \Omega(\subset \mathbb{R}^n) \to \mathbb{R}^m
$$

• Such as paths ... scalar-valued functions $f:\Omega(\subset \mathbb{R}^n)\to \mathbb{R}^1$

Compared to yesterday ...

• We studied Banach spaces of functions:

 $V = \{f : \Omega \to \mathbb{F} \mid ||f|| < +\infty\}$

- Metric measured *distance between functions*
- Now, we study the *function itself*:

 $f:\Omega(\subset \mathbb{R}^n)\to \mathbb{R}^m$

• Now the metric measures *distance in Euclidean space*

In quantum chemistry

- *Most* methods can be formulated as:
	- $E: \Omega(\subset \mathbb{F}^n) \to \mathbb{R}, \quad \mathbf{x} \mapsto$ energy function

Find $\mathbf{x} \in \Omega$ such that

$$
E(\mathbf{x}) = \text{min}!, \quad \text{i.e.,} \quad \nabla E(\mathbf{x}) = 0.
$$

Hartree-Fock, for

example

A typical domain Ω

Topology of Euclidean space

• Definition of an *epsilon-ball*

Definition : Topologically important sets

- 1. A subset $S \subset \mathbb{R}^n$ is called *open* if, for every $x \in S$, there is an $\varepsilon > 0$ such that $B_{\varepsilon}(\mathbf{x}) \subset S$.
- 2. A subset S is called *closed* if $S^C = \mathbb{R}^n \setminus S$ is open.
- 3. The *closure* $cl(S)$ is the smallest closed set that contains S.
- 4. The *interior* $int(S)$ is the set of all those $x \in S$ around which there exists an ε -ball in S
- 5. The *boundary* ∂S is the intersection $cl(S^C) \cap cl(S) = S$ $int(S)$

Examples

Neighborhood of x

• Any set containing **x** and an open ball around **x**

neighborhood containing **x**

NOT a neighborhood containing x

Definition : Limit

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$, where Ω is open. Let $\mathbf{x}_0 \in \Omega \cup \partial \Omega$, and let N be a neighborhood of $\mathbf{b} \in \mathbb{R}^m$.

We say that f is eventually in N as **x** approaches \mathbf{x}_0 , if there exists a neighborhood U of x_0 , such that $x \in U$ but $x \neq x_0$ and $\mathbf{x} \in \Omega$ imply $f(x) \in N$.

We say that $f(\mathbf{x})$ approaches **b** as **x** approaches \mathbf{x}_0 ,

$$
\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = \mathbf{b} \quad \text{or} \quad f(\mathbf{x}) \to \mathbf{b} \text{ as } \mathbf{x} \to \mathbf{x}_0,\tag{1}
$$

when, given any neighborhood N of b, f is eventually in N as x approaches \mathbf{x}_0 .

Intiuition

Intiuition

Intiuition

Let $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$. Let $\mathbf{x}_0 \in \Omega$. We say that f is continuous at x_0 if

$$
\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0).
$$

Multidimensional version of "unbroken graph"

Discontinuous in 1d

 $f : \mathbb{R} \to \mathbb{R}$ makes a jump

Example

• Is the following function continuous at $(0,0)$?

$$
f: \mathbb{R}^2 \to \mathbb{R}, \quad (x, y) \mapsto \frac{x}{x^2 + y^2}
$$

 \cdot^2

- No, because the limit does not exist.
- Different limit candidates if we approach from different directions
- *The definition of limit is designed to detect such situations*

More subtle, in 1D

• Is the following function continuous?

$$
f:(0,1)\to\mathbb{R},\quad x\mapsto\sin(1/x)
$$

- Yes, since we do not include 0 in the domain
- But *f* has no limit at $x = 0$

Theorem: Properties of continuous functions

Let $f, g : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be functions with a common domain Ω , continuous at \mathbf{x}_0 : Then:

1. $f + g$ and αf for any $\alpha \in \mathbb{R}$ are continuous at \mathbf{x}_0 .

- 2. In the scalar-valued case $m = 1$, the product fg is continuous at \mathbf{x}_0
- 3. If $f \neq 0$ in all of Ω , then $1/f$ is continuous at \mathbf{x}_0
- 4. The component functions $f_i : \Omega \to \mathbb{R}$ are all continuous at \mathbf{x}_0 . The converse is also true.

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be continuous at $\mathbf{x}_0 \in \Omega$, and $g: \Omega' \subset$ $\mathbb{R}^m \to \mathbb{R}^o$. Suppose $f[\Omega] \subset \Omega'$, and let g be continuous at $y_0 =$ $f(\mathbf{x}_0)$. Then $h: \Omega \subset \mathbb{R}^n \to \mathbb{R}^o$,

 $h(\mathbf{x}) = g(f(\mathbf{x}_0))$

is continuous at x_0 .

These two theorems can be used to decide continuity of very complicated functions, once simpler functions are proven to be continuous

Examples

- polynomials in any variable
- exponential function
- sine, cosine …
- any composition of such
- careful with division!

$$
f : \mathbb{R}^3 \to \mathbb{R},
$$
 $f(\mathbf{x}) = \exp[-||\mathbf{x}||^4 + \cos(x_1)]x_1x_2x_3^4(1 + x_1^2)^{-2}$

Definition: Partial derivative

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ be a scalar-valued function, Ω open. The *partial derivatives* with respect to the variable x_i are defined by

$$
\frac{\partial}{\partial x_i} f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{e}_i) - f(\vec{x})}{h}
$$

if the limit exists.

In the case $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$, the the partial derivatives are defined componentwise, i.e.,

$$
\frac{\partial}{\partial x_i}f_j(\mathbf{x}).
$$

Example

$$
f(x, y) = xy
$$

$$
\frac{\partial}{\partial x} f(x, y) = \lim_{h \to 0} \frac{(x + h)y - xy}{h}
$$

$$
= \lim_{h \to 0} \frac{hy}{y} = \lim_{h \to 0} y = y
$$

Single-variable functions

• For "ordinary" functions *f* : [*a*,*b*] ⊂ℝ → ℝ, consider the derivative:

$$
\frac{df(x)}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \qquad \qquad \frac{\Delta f}{\Delta x}
$$

if the limit exists.

- Indeed, for vector-valued functions, the partial derivative is calculated as if *f* was a1-variable function!
- All the other variables are "held constant"

Derivative as slope

- Derivative is the *slope of tangent at x*
- When $f(x)$ has a derivative at *x*, the function *can be approximated*

$$
f(y) = f(x) + f'(x)(y - x) + \text{small error}
$$

• Here *y is close to x* Want

something like this for vectorvalued funcs

Derivative as slope/tangent

• Partial derivative is the rate of change as one moves in one direction

Existence of partial derivatives seems good ...

Example

let $f : \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x^{1/3}y^{1/3}$. Since $f(x, 0) = 0$ and $f(0, y) = 0$,

$$
\frac{\partial}{\partial x} f(0,0) = \frac{\partial}{\partial y} f(0,0) = 0.
$$
 (1)

But along the "diagonal"

$$
g(x) = f(x, x) = x^{2/3}.
$$
 (2)

The derivative of $g(x)$ is

$$
g'(x) = \frac{2}{3}x^{-1/3} \to +\infty \text{ as } x \to 0
$$
 (3)

Definition : Differentiable

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$, with Ω open. We say that f is differ*entiable at* $\mathbf{x}_0 \in \Omega$ if the partial derivatives all exist at \mathbf{x}_0 , and if

$$
\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{\|f(\mathbf{x})-f(\mathbf{x}_0)-M(\mathbf{x}-\mathbf{x}_0)\|}{\|\mathbf{x}-\mathbf{x}_0\|}=0,
$$

What does this mean?

where $M = Df(\mathbf{x}_0)$, the *derivative*, is the matrix of partial derivatives,

$$
M_{ij}=\frac{\partial f_i(\mathbf{x}_0)}{\partial x_j}.
$$

and where $M(x-x_0)$ is the matrix-vector product applied to $x-x_0$.

Interpretation of diffability condition

• Condition for a *first-order Taylor polynomial at* \mathbf{x}_0

Small error term

 $f(\mathbf{x}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + o(||\mathbf{x} - \mathbf{x}_0||^2)$

• Generalization of the slope of the tangent line to higher dimensions

Intuitive, and good to know

If f is differetiable at \mathbf{x}_0 , it is continuous at \mathbf{x}_0 .

Theorem 2: Condition for differentiability

Resolves the ugly example

Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$, with Ω open. Suppose the partial derivatives all exist at x_0 , and furthermore that they are all continuous *in a neighborhood* of x_0 . Then f is differentiable at x_0 .

Continuously differentiable functions

• These functions can always be approximated by first-order Polynomials

Definition 1: $C¹$ functions

A function whose partial derivatives exist and are continuous throughout its open domain Ω is said to be of class C^1 .

Theorem : Properties of the derivative

1. Let $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $\mathbf{x}_0 \in \Omega$, and let $c \in \mathbb{R}$. Then $h(\mathbf{x}) = cf(\mathbf{x})$ is differentiable at \mathbf{x}_0 , and Linearity

$$
Dh(\mathbf{x}_0)=cDf(\mathbf{x}_0).
$$

2. Let $g: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ be another function differentiable at x_0 . Then $h(x) = f(x) + g(x)$ is differentiable at x_0 , and

$$
Dh(\mathbf{x}_0) = Df(\mathbf{x}_0) + Dg(\mathbf{x}_0). \tag{2}
$$

Product

3. Let $f, g: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ be *scalar-valued* functions, differentiable at $x_0 \in \Omega$. Then $h(x) = f(x)g(x)$ is differentiable at \mathbf{x}_{0} , and

$$
Dh(\mathbf{x}_0) = g(\mathbf{x}_0)Df(\mathbf{x}_0) + f(\mathbf{x}_0)Dg(\mathbf{x}_0).
$$
 rule

4. As in 3, and additionally that $g > 0$ thrughout Ω . Then $h(\mathbf{x}_0) = f(\mathbf{x}_0)/g(\mathbf{x}_0)$ is differentiable at \mathbf{x}_0 , and

$$
Dh(\mathbf{x}_0) = \frac{g(\mathbf{x}_0)Df(\mathbf{x}_0) - f(\mathbf{x}_0)}{[g(\mathbf{x}_0)]^2}
$$
 Quotient rule

Theorem: Chain rule

Let $\Omega \subset \mathbb{R}^n$ and $\Omega' \subset \mathbb{R}^m$ be open sets, and let $g : \Omega \to \mathbb{R}^m$ with $g[\Omega] \subset \Omega'$. Let $f : \Omega' \to \mathbb{R}^{\circ}$. Thus, $h = f \circ g : \Omega \to \mathbb{R}^{\circ}$ is defined. Suppose g is differentiable at $x_0 \in \Omega$, and f is differentiable at $y_0 = f(x_0) \in \Omega'$. Then $f \circ h$ is differentiable at x_0 with derivative

 $D(f \circ g)(\mathbf{x}_0) = Df(\mathbf{y}_0)Df(\mathbf{x}_0),$

i.e., the matrix product of the Jacobian matrices.

Ex: Drone measuring temperature

Total time derivative of temperature measured:

 $f: \mathbb{R}^3 \to \mathbb{R}$ temperature $\frac{dg}{dt} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial f}{\partial z}\frac{\partial z}{\partial t}.$ **path**

 $g(t) = f(c(t)) \in \mathbb{R}$ temperature along path

Higher derivatives

- *f* is of class *C*² if the partial derivatives (matrix elements of *Df*) are of class *C*¹
- Matrix elements of $D(Df) = D^2f$: Iterated partial derivatives

$$
[D^{2} f(\mathbf{x})]_{ijk} = \frac{\partial^{2}}{\partial x_{j} \partial x_{k}} f_{i}(\mathbf{x}) = \frac{\partial^{2}}{\partial x_{k} \partial x_{j}} f_{i}(\mathbf{x})
$$

• Fact: If *C*² , then partial derivatives *are symmetric*

Theorem : Second-order Taylor formula
\net
$$
f : \Omega \subset \mathbb{R}^n \to \mathbb{R}
$$
 be of class C^2 . Then we may write
\n
$$
f(\mathbf{x}_0 + \mathbf{h}) = \frac{f(\mathbf{x}_0) + Df(\mathbf{x}_0)\mathbf{h} + \frac{1}{2}\mathbf{h}^T D^2 f(\mathbf{x}_0)\mathbf{h}}{2} + R_2(\mathbf{h}, \mathbf{x}_0),
$$
\nwhere the *remainder* satisfies $R_2(\mathbf{h}, \mathbf{x}_0)/||\mathbf{h}||^2 \to 0$ as $\mathbf{h} \to 0$,
\nwritten
\n
$$
R_2(\mathbf{h}, \mathbf{x}_0) = o(||\mathbf{h}||^2).
$$
\nThe symbol $D^2 f(\mathbf{x}_0)$ is the *Hessian* of f , the matrix of second-

order mixed partial derivatives, a symmetric matrix.

Example

Compute the second-order Taylor polynomial of $f(x, y) = \exp(-x^2 - y^2)$ at (0, 0).

$$
Df(x, y) = [-2xf(x, y), -2yf(x, y)],
$$

\n
$$
D^{2}f(x, y) = \begin{bmatrix} (4x^{2} - 2)f(x, y) & 4xyf(x, y) \\ 4xyf(x, y) & (4y^{2} - 2)f(x, y) \end{bmatrix}
$$
 (2)

$$
f(0,0) = 1
$$
, $Df(0,0) = [0,0],$ $D^2 f(0,0) = \begin{bmatrix} -2 & 0 \\ 0 & -2 \end{bmatrix}$ (3)

$$
f(x, y) = 1 - (x2 + y2) + o(x2 + y2).
$$
 (4)

 X

Local extrema

- Let $f : \Omega \to \mathbb{R}$ be twice differentiable, and $\mathbf{x}_0 \in \Omega$
- Local maximum:

Exists $\epsilon > 0$ such that $f(\mathbf{x}) \le f(\mathbf{x}_0)$ for all $\mathbf{x} \in B_{\epsilon}(\mathbf{x}_0)$

• Local minimum:

Exists $\epsilon > 0$ such that $f(\mathbf{x}) \ge f(\mathbf{x}_0)$ for all $\mathbf{x} \in B_{\epsilon}(\mathbf{x}_0)$

• Fact: Any local extremum is a *critical point:*

 $Df(\mathbf{x}_0) = 0$

Critical points

- A critical point can be a local minimum, maximum, or *saddle point*
- Saddle points are critical points that are not a max/min

figure 3.3.4 The volcano: $z = 2(x^2 + y^2)$ exp $(-x^2 - y^2)$.

Picture from Marsden and Tromba, "Vector Calculus"

Theorem : Classification of critical points

et $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$, with Ω being an open domain. Let f be of class C^2 . Let $H = D^2 f(x)$ be the second derivative (Hessian) at a critical point $\mathbf{x} \in \Omega$, i.e., $Df(\mathbf{x}) = 0$. Then we have:

- 1. If all the eigenvalues of H are positive, then x is a local minimium.
- 2. If all the eigenvalues of H are negative, then x is a local maximum.
- 3. If there are eigenvalues of H with both positive and negative values, but no zero eigenvalues, then x is a saddle point.
- 4. If some eigenvalues are zero, we cannot conclude based on second-order Taylor polynomials.

Further topics

- Series and convergece of series
- Integration over curves, surfaces, volumes ...
- Vector operations: curl, divergence, gradient ...
- Gauss' and Stoke's theorems for integration
- My presentation is based on \rightarrow

VectorCalculus

SIXTH EDITION

Jerrold E. Marsden Anthony Tromba