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Vector calculus

Functions, integration and differentiation, in one and several variables



Functions of several variables

* We turn to the study of vector valued functions
f:R'—>R" f:QCR"Y > R"
* Such as paths ... scalar-valued functions

f:Q(cRhH - R™ f:QCRY - R!
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Compared to yesterday ...

» We studied Banach spaces of functions:
V={f:Q->F[fll <+oo}

 Metric measured distance between functions
* Now, we study the function itself:

f:QCRY) > R

* Now the metric measures distance In Euclidean space



In quantum chemistry Hartree-Fock, for

example

* Most methods can be formulated as:

E:Q(CF') - R, X energy function
Find x € ) such that

E(x) =min!, 1e., VEX)=0.



A typical domain O

Boxes in n The theory
dimensions handles very
general

Interval
SfVais shapes

are typical




Topology of Euclidean space

* Definition of an epsilon-ball

B.(x) c R”
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All points y with ||y — x|| < €



Definition : Topologically important sets

1. A subset S C R" 1s called open 1if, for every x € S, there 1s
an £ > 0 such that B.(x) C §.

2. A subset S is called closed if S = R™ \ § 1s open.
3. The closure cl(S) 1s the smallest closed set that contains S .

4. The interior int(S) 1s the set of all those x € S around which
there exists an e-ball in S

5. The boundary 8S is the intersection cl(SC) N cl(S) = S \
nt(S)



Examples
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Neighborhood of x

« Any set containing x and an open ball around x

B(x)

K*

NOT a neighborhood containing x

neighborhood containing x



Definition : Limit

Let f: Q Cc R" - R"™, where Q 1s open. Let xg € Q U 092, and
let N be a neighborhood of b € R™.

We say that f 1s eventually in N as X approaches X, 1f there
exists a neighborhood U of X, such that x € U but x # X and
x € Q mmply f(x) € N.

We say that f(X) approaches b as x approaches X,

Im f(x)=b or f(x)— basx — Xy, (1)

X—X(

when, given any neighborhood N of b, f is eventually in N as x
approaches x.



Intiuition




Intiuition




Intiuition




Definition : Continuity

Let f:Q CR" —> R™ Letxg € Q. We say that
f 1s continuous at Xq 1f

Iim f(x) = f(Xo).

X—X(

Multidimensional version of “unbroken graph”



Discontinuous in 1d f: R — R makes a jump

J(x)

TN



Discontinuous in 1d f: R — R makes a jump

f(x)

However we
choose U, it will
betorn apart by f




Example

» |s the following function continuous at (0,0)? \/lgga
o
2 201510050, 05 1.0 15 50 _53015%

X
- R> >R, (x,y) —
/ (x,y) R

* No, because the limit does not exist.
« Different limit candidates if we approach from different directions
* The definition of limit is designed to detect such situations



More subtle, in 1D

* |Is the following function continuous?
f:0,1) =R, xsm(l/x)

* Yes, since we do not include O in the domain
e Butfhasnolimitatx=20




Theorem : Properties of continuous functions

Let f,g: Q C R" —» R be functions with a common domain €,
continuous at xg: Then:

1. f+gandaf for any a € R are continuous at Xxy.

2. In the scalar-valued case m = 1, the product fg 1s continu-
ous at xg

3. If f # 0 1n all of 2, then 1/ f 1s continuous at x

4. The component functions f; : Q — R are all continuous at
Xo. The converse 1s also true.




Theorem : Compositions of functions

Let f: Q Cc R" - R™be continuous at Xy € Q, and g : Q' C
R™ — R°. Suppose f[€2] c ', and let g be continuous at yg =
f(xp). Thenh : Q Cc R" - R,

h(x) = g(f(Xo)

1S continuous at Xg.

These two theorems can be used to decide continuity
of very complicated functions, once simpler
functions are proven to be continuous



Examples

 polynomials in any variable
« exponential function

* sine, cosine ...

 any composition of such

« careful with division!

[R5 R, f(x)=exp[-|x||* + cos(x;)]x; x5 (1 + x3)~°



Definition : Partial derivative

Let f : Q Cc R*" — R be a scalar-valued function, €2 open. The
partial derivatives with respect to the variable x; are defined by

d . fx+he) - f(X)
6—xif(X)—}lllg(l) ,

if the limit exists.
In the case f : Q Cc R" — R™, the the partial derivatives are
defined componentwise, 1.€.,

0
(9_x,-fj(x)°



Example

J(x,y) = xy

(x+h)y —xy

0 .
. hy
=lm-—=lmy=y
h—0 Yy h—0



Single-variable functions

* For ”ordinary” functions f : [a,b] cR — R, consider the derivative:

dfx) _ o fa+ A - f()
dx B Ax—0 Ax
If the limit exists.

* Indeed, for vector-valued functions, the partial derivative is calculated
as If f was al-variable function!

* All the other variables are "held constant"




Derivative as slope

* Derivative is the slope of tangent at x

* When f(x) has a derivative at x, the
function can be
approximated

) = f(x) + f'(x)(y = x) + small error

* Here y Is close to x Want

something like
this for vector-
valued funcs

f(x,0.5)

Ax

KAf
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Derivative as slope/tangent
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* Partial derivative is the rate of change as one moves In

one direction



Existence of partial derivatives seems good ...

Example

let f : R> - R, (x,y) — x!3y!/3. Since
f(x,0) =0and £(0,y) =0,

0 0
—-f(0,0) = —£(0,0) =0. (1)
0x oy

But along the “diagonal”

g(x) = f(x,x) = x*°. (2)

The derivative of g(x) is

2
o'(x) = —x71/3

3 — 400 asx—0 (3)




Existence of partial derivatives seems good ...

Example

let f : R> = R, (x,y)
f(x,0) =0and £(0,y) =0,
Existence of partial
0 o .
5./ (0:0) = derivatives at a point Is
X oy

NOT GOOD ENOUGH!
But along the “diagonal”

g(x) = f(x,x) = x*7°.

The derivative of g(x) is
090
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X
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Definition : Differentiable

Let f : Q c R" - R"”, with Q open. We say that f 1s differ-
entiable at X, € C 1f the partial derivatives all exist at x(, and

if
1f(X) — f(X0) — M(x —xp)l| What does
m =0, this mean?

I1
XX [Ix = Xo|

where M = D f(Xg), the derivative, 1s the matrix of partial deriva-
tives,

YL
Y 8xj .

and where M(x—X() 1s the matrix-vector product applied to x—Xy.



Interpretation of diffability condition

Small

 Condition for a first-order Taylor polynomial at x,
error term

f(x) = f(X0) + Df(Xo) - (X = Xo) + o(||x — Xo|*)

 Generalization of the slope of the tangent line to higher dimensions



Intuitive, and

Theorem 1 good to know

If f 1s differetiable at xg, 1t 1s continuous at X.

Resolves the

ugly example

Theorem 2: Condition for differentiability

Let f: Q c R" — R", with QQ open. Suppose the partial deriva-
tives all exist at Xg, and furthermore that they are all continuous
in a neighborhood of xq. Then f 1s differentiable at xy.



Continuously differentiable functions

* These functions can always be
approximated by first-order
Polynomials

Definition 1: C! functions

A function whose partial derivatives exist and
are continuous throughout its open domain €2 1s
said to be of class C!.



Theorem : Properties of the derivative

1. Let f : Q Cc R" — R™ be differentiable at X, € 2, and let c € R. Then A(x) = cf(x) 1s differentiable
at Xo, and

Dh(xp) = cD f(xo). )

2. Let g : Q c R" — R" be another function differentiable at xg. Then A(x) = f(X) + g(x) 1s
differentiable at x(, and

Dh(x¢) = Df(xp) + Dg(Xo). (2)

3. Let f,g: Q C R" — R be scalar-valued functions, differentiable at xg € Q. Then A(Xx) = f(x)g(x)
1s differentiable at x)g, and

Product

Dh(x¢) = g(X0)Df(Xp) + f(X0)Dg(xop). rule

4. Asin 3, and additionally that g > 0 thrughout Q. Then h(xp) = f(X¢)/g(Xp) i1s differentiable at x,

and
g(X0)Df(x0) — f(Xo) Quotient

[g(x0)]? rule

Dh(xg) =




Theorem : Chain rule

Let Q ¢ R" and Q" c R™ be open sets, and let g : Q — R”
with g[Q] Cc Q. Let f : Q" -5 R?. Thus,h= fog:Q — R?
1s defined. Suppose g 1s differentiable at xo € Q, and f 1s
differentiable at yo = f(xg) € ©’. Then f o h is differentiable
at Xp with derivative

D(f o g)(x0) = Df(yo)Df(Xp),

1.e., the matrix product of the Jacobian matrices.



Ex: Drone measuring temperature

Total time derivative of
temperature measured:

dg dfdx ofdy 0Of0z

— = —

dt  dx ot 0y ot 9z 0t

Q

g(t) = f(e(r)) € R temperature along path

f:R* >R temperature




Higher derivatives

* fis of class C? if the partial derivatives (matrix elements of Df) are of
class C!

« Matrix elements of D(Df) = D?f: Iterated partial derivatives
52 52

6‘,1:_;6@]‘}(]{) ) 8xk8+xjﬁ(x)

[D? f(X)]ijx =

* Fact: If C?, then partial derivatives are symmetric



Theorem : Second-order Taylor formula j—-—

Important for
optimization!

et f: Q cR" — R be of class C2. Then we may write

1
f(xo +h) :‘ f(x0) + Df(xp)h + EhTD2f<xO>h & R>(h, xo),

where the remainder satisties Rr(h, Xg) /||h||2
written

Ry(h, x0) = o(|[h|]%). Polynomiall

The symbol D? f(X) is the Hessian of f, the matrix of second-
order mixed partial derivatives, a symmetric matrix.




Example

Compute the second-order Taylor polynomial of
f(x,y) = exp(—x* — y?) at (0, 0).

Df(x,y) = [-2xf(x,y), =2yf(x,y)],

D*f(x,y) =

S0,0)=1, Df(0,0) =[0,0],

(4x” = 2)f(x,)

dxyf(x,y)

D*£(0,0) =

dxyf(x,y)

(4y* = 2)f(x,y)

—2
0

fx,y) = 1= (x* +y°) +o(x* + y°).

0
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Local extrema

Let f: Q — R betwice differentiable, and xp € £2
Local maximum:

Exists € > 0 such that f(x) < f(xg) for all x € B.(xy)

_ocal minimum:

Exists € > 0 such that f(x) > f(xp) for all x € B.(xp)

Fact: Any local extremum is a critical point:

Df(xo) =0



Critical points

« A critical point can be a local minimum, maximum, or saddle point
« Saddle points are critical points that are not a max/min




Example: The volcano function

Local min in the well
Z
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figure 3.3.4 The volcano: z=2(x2 + y2) exp (— x2 — y?).

Picture from Marsden and Tromba, ”Vector Calculus”
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Local max at the rim




Theorem : Classification of critical points

et f: Q CR" — R, with Q being an open domain. Let f be of class
C?. Let H = D?f(x) be the second derivative (Hessian) at a critical
pointx € Q, 1.e., Df(x) = 0. Then we have:

1. If all the eigenvalues of H are positive, then x 1s a local minim-
um.

2. If all the eigenvalues of H are negative, then x 1s a local maxi-
mum.

3. Ifthere are eigenvalues of H with both positive and negative val-
ues, but no zero eigenvalues, then x 1s a saddle point.

4. If some eigenvalues are zero, we cannot conclude based on
second-order Taylor polynomials.




Further topics VectorCalculus

SIXTH EDITION

e Series and convergece of series

* Integration over curves, surfaces,
volumes ...

* Vector operations: curl, divergence,
gradient ...

* Gauss’ and Stoke’s theorems for
Integration

* My presentation is based on =

Jerrold E. Marsden

Anthony Tromba
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